

PRODIAS

Developing resource and energy-efficient methods and technologies to boost competitiveness of European Industry

Quality Efficiency Costs

[The challenge

- Integration of renewable raw material into industrial value chains
- Cost-competitiveness of processes using renewable resources
- Challenging product properties
- Complex, energy intensive downstream processes

[The target

- Substantially improvement of downstream processes
- Operation of the process of the p
- Operation Decreasing OPEX via increased efficiencies, less energy and utility usage
- Increase of competitiveness of bio-processes and renewable processing

[The concept

- Development of optimized and novel, cost-effective and "renewable-tailored" concentration and separation technologies
- Tuning of up-stream process
- Development of hybrid combinations
- Demonstration of technologies in industrially appropriate environments
- Process characterization to identify the key physical property data required for the design and operation
- Integrated design approach for the fast-track selection

[The schedule

[The technologies

- Novel & optimized concentration + separation technologies with improved performance
 - Significant increase in productivity and efficiency
 - Observe of Decrease of Complexity of processes
 - Significantly lower energy consumptions
 - Decrease of investment costs

[Expected realizations

- Demonstration of 2-3 technologies in pilot plants in industrially appropriate environments TRL 5-7
- 6 7 implementations of reaction & separation technologies as standards in R&D
- 3 implementations of the design approach

(Source: BASF picture database)

WP3 LESSY
WP4 SELSEPS
WP5 TUNACTION

11 Single Techn.12 Hybrid Combi.

(Source: PRODIAS Consortium partners

Technologies developed and optimized in WP3, WP4, WP5

Single Technologies Project Month 18

Low energy high-speed centrifuges

In process microflotation

Small hydro-cyclones for yeast separation

Screening apparatus for flocculation

Co-Crystallization to decrease solubility

Salt-form Crystallization

High titer product fermentation

Biomass recycling as active booster for fermentation

Purifying sugars hydrolysate via adsorption

Purifying sugars hydrolysate via chromatography

Crystallization greens recycling

Project Month 18

Hybrid Technologies

Flocculation inside high-speed centrifuges

Flocculation as preconditioning for high-speed centrifuges

EBA in SMB-Mode

In situ batch extraction & recovery

Reactive extraction & recovery

Extraction & bipolar ED

IEX & bipolar ED

Anti solvent crystallization & SMB

Combined Cryst. & Dec

Combined Cryst. & Reflux

Purifying sugars hydrolysate via flocculation / flotation & membrane

Freeze concentration & membranes

PRODIAS

Technology Evaluations towards Demonstration

Technology Score Card

Fit to PRODIAS Objectives

Decreased investment costs
Increased raw material efficiency
Decreased energy consumption
leading to e.g. less CO₂ emission

Technology Evaluation

Today three Technologies nominated for **DEMONSTRATION** in pilot plants in industrially app

DEMONSTRATION in pilot plants in industrially appropriate environments **TRL5-7**

CENTRIFUGES WP3

- Energy efficient (50% reduction)
- Improved functionality
- Pilot plant separator 2017

HIGH TITER FERMENTATION WP5

- Increase of final titer
- Increased productivity
- Improved raw material efficiency
- Implementation ongoing

FREEZE CONCENTRATION WP4

- Technical feasibility proven
- Quick return on investment
- Savings in OPEX
- Starting construction of commercialized size module 2017

[Technological

- Novel & cost effective separation technologies
 - Toolbox of validated separation technologies
 - Integrated design approach

Improved Performance

- Significant increase in productivity and efficiency
- Decrease of complexity of processes
- Significantly lower energy consumptions
- Decrease of investment costs

Environmental

- Reduction of energy consumption
- Reduction in GHG emissions
- Reduction of water usage
- Increase of raw material efficiency

[Economic/Social

- Stronger Competitiveness of the European Industry
 - Establishes R&D results in near to industrial environment
 - Develops methods and technologies used in different industrial sectors
 - Increase of competitiveness of renewable-based chemical products
 - Offers employment opportunities
- Improved Innovation Capacity and Knowledge Integration
 - Cross sectorial partners share knowledge and costs
 - Deepened understanding of downstream processes via cooperation
 - Acceleration of adaption, transfer and take up of new technologies

[Next steps

- Advanced development phase for technologies for implementation with planned TRL 4 and above
- Specification of starting conditions and boundary conditions towards DEMOSYS (WP7) for technologies TRL5-7
- WP8 (Integral Design Approach) Initiation of information exchange (publication event) and starting workshop on the topic of "Decision support for design of downstream processes" in Nov 2016
- Next technology review planned for beginning of 2017

PRODIAS webpage: https://www.spire2030.eu/prodias/

PRODIAS Posters on ProcessNet 2016

BASF / Xendo

BASF

BASF

TU Kaiserslautern

PRODIAS More Information

- PRODIAS webpage: http://spire2030.eu/prodias/
- Framework Horizon2020:
 http://ec.europa.eu/programmes/horizon2020
- Project PRODIAS is coordinated through: Michael Helmut Kopf BASF SE, CARL BOSCH STRASSE 38, LUDWIGSHAFEN AM RHEIN 67056, Germany
- For further information, please contact: <u>sabina.buchardt@basf.com</u> PRODIAS Dissemination & Exploitation Manager

Acknowledgements

The research project receives funding from the European Community's Framework Programm for Research and Innovation Horizon 2020 (2014-2020) under grant agreement no. 637077

