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1 Introduction 

 
Although the industrial (semi-)batch processes that are subject of real-time 
optimization in the RECOBA project share several common characteristics, e.g. 
temporal evolution of product/intermediate product quality or importance of 
temperature control, they also significantly differ in their fundamental aspects, e.g. 
number of interacting phenomena, number of chemical components involved or 
influence of macro-scale dynamics. These differences were reflected in the 
mathematical models, which were developed within Work Package 4 for on-line 
control and optimization applications.  

In Deliverable D 4.1, the layout of the process models which were available for (i) 
polymerization, (ii) steelmaking, and (iii) silicon production processes at the beginning 
of the project, and which were subject of extensions developed throughout the work 
performed within WP 4, has been described. This layout is now updated and 
generalised in this Deliverable D 4.7, to provide cross-sectorial concepts and 
strategies for development of dynamic process models, which are detailed enough 
for accurate process description, but nevertheless sufficiently fast for application 
within on-line control systems. The final model layout thus shall serve as a 
guide/tutorial to interested parties (outside of RECOBA project consortium) how to 
quickly interface their batch process models with optimisation and control tools. 

    

2 Structure and interfaces of process models 
 

In this section first a description of the structure and functionality of the process 
models which were developed for the different (semi-)batch processes  involved in 
the RECOBA project is given, with focus on (i) model inputs available from real-time 
process sensing (online process measurements), (ii) predictions of the relevant 
process state variables and product characteristics and (iii) modular architecture, i.e., 
interconnection of separate model parts constituting the desired control model.  

Next, the interfaces of the models for integration within on-line control and 
optimisation tools are outlined. 

Both aspects are generalised for application of the approaches at other batch 
processes of the process industry.     
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2.1 Model structure and functionality 

2.1.1 Polymerization process 
The polymerisation process considers a seeded emulsion polymerisation, during 
which a second polymer phase grows within already existing polymer nanoparticles, 
so the models have to take into account different scales. Spatial scales span from 
macro-scale properties relevant for the whole reactor to nanoscale properties 
relevant to polymer nanoparticles present in the polymer dispersion and even 
molecular architecture of polymers within the polymer particles. For this purpose, we 
use different models to describe properly all physical and chemical processes in the 
system. Namely, three models are used: Macroscale deterministic model capturing 
monomer(s) conversion and temperature development within the reactor; 
Morphological deterministic model describing evolution of the two polymer phases 
present in the polymer particles and consequently influencing particle morphology; 
and stochastic Monte Carlo model simulating growth of the polymer molecules in the 
particles and thus predicting polymer properties. Here we describe individual models’ 
functionalities and finally their common interconnections. 

2.1.1.1 Macroscale model 
This model is based on a set of ordinary differential equations (ODEs), which 
describes evolution of all different species present in the reactor (monomers, 
polymers, chain transfer agent – CTA, water, initiator, surfactant and water) in all 
phases (aqueous phase, oil phase and polymer particles), transport phenomena of 
the species between the phases and chemical reactions of all species. An input for 
this model is a recipe, which describes the initial conditions in the reactor and feeding 
profiles of individual species in time (monomer, initiator, CTA, surfactant and water). 
Output of this model is the time-evolution of all species concentrations and 
consequently mainly monomer(s) conversion and temperature evolution. List of all 
state variables balanced in the model is collected in Table 1. 
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Table 1: List of state variables of the polymerization process mode 

Name Symbol Unit 
Molar amount of monomer M1 in the system (particles + droplets) nM1 mol 
Molar amount of monomer M2 in the system (particles + droplets) nM2 mol 

Molar amount of monomer M3 in the aqueous phase nM3 mol 
Molar amount of monomer M4 in the aqueous phase nM4 mol 

Molar amount of water in the aqueous phase nW mol 
Molar amount of CTA in the system (particles + droplets) nCTA mol 

Molar amount of undissociated initiator in the aqueous phase nI mol 
Molar amount of redox inhibitor in the aqueous phase (in case of redox 

initiator usage) 
nredox mol 

Molar amount of monomer M1 in polymer particles P
Mn 1  mol 

Molar amount of monomer M2 in polymer particles P
Mn 2

 mol 
Molar amount of CTA in polymer particles P

CTAn  mol 
Molar amount of polymerized M1 PM1 mol 
Molar amount of polymerized M2 PM2 mol 
Molar amount of polymerized M3 PM3 mol 
Molar amount of polymerized M4 PM4 mol 

Average number of radicals per polymer particle n  - 
Molar amount of radicals in the aqueous phase W

Rn  mol 
First moment of living chains 1 mol 
Zero moment of dead chains 0 mol 
First moment of dead chains 1 mol 

Temperature of reaction mixture TR K 
Temperature of the reactor jacket TJ K 

 

2.1.1.2 Morphological model 
Inputs of the Morphological model are conversions of individual monomers (gained 
from the Macroscale model) and balances generation, growth and position of the 
second polymer clusters in the particles. The clusters are divided into two groups 
according to their position to non-equilibrium (typically inside the particles – at the 
place of their birth) and equilibrium (typically the edge of the particles). Furthermore, 
these two groups of clusters are divided into a distributions according to their size 
(volume of incorporated polymer), which corresponds to the fact that a set of particles 
gives us distribution of different morphologies influenced by the distribution of the 
clusters (cf. Figure 1 left). The clusters distributions are divided among a finite 
number of pivots, which gives us a finite number of variables to be balanced. The 
resulting model can predict an evolution of clusters distribution, which example is 
depicted in the right of Figure 1.  
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Figure 1: Left figure is a TEM micrograph of composite latex produced by seeded emulsion copolymerization of 
styrene and butyl acrylate on a methyl methacrylate-butyl acrylate crosslinked seed illustrating distribution of 
particle morphologies [1]. Right figure depicts normalized weight distribution of the equilibrium, n(x,t), and non-
equilibrium clusters, m(x,t), present in the system predicted by the Morphological model [1]. 

Morphological model is also encoded as a set of ODEs and therefore it can be easily 
implemented as an extension module of the Macroscale model. The equations can 
be integrated either simultaneously with the Macroscale model or as a second step 
using precomputed concentrations. Integrating in two steps is better for numerical 
stability (because the two systems have different stiffness) and for control purposes, 
because the computational demands are different (morphological model, although 
quite fast, is still several times slower). 

The innovative morphological model can describe any multiphase system in which 
the morphology of the phases is driven by reaction generation of one phase and its 
diffusive migration towards an equilibrium position. Model structure would be similar 
for all such systems; however, constants describing individual phenomena in the 
system (e.g. nucleation, migration, coalescence of the clusters) might have different 
physical meaning and consequently different values or even different functional 
dependencies. 

2.1.1.3 Monte Carlo model 
Most of the polymerisation takes place in the separated polymer particles and 
number of radicals (reaction centres) in each particle is typically on the order of ones, 
which is not reasonable to be treated as a continuous variable. There are 
approaches, how to properly approximate these rather discrete than continuous 
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variables for differential purposes, but stochastic approaches are more natural for 
such systems and, therefore, sometimes more efficient. To make the model more 
computationally efficient we used a hybrid approach, which uses precomputed 
concentration profiles from the Macroscale deterministic model and focuses only on 
simulating of polymer chains and their interconnection (branching) in the particles. 
This approach reduces computational time of hybrid Monte Carlo method below 
10 seconds even for the copolymerisation of 4 monomers, so that requirements for 
online process control are met. 

The model is implemented as an extension module to the Macroscale model. Monte 
Carlo needs as an input results from Macroscale model and further provides 
predictions of full molecular weight distribution and molecular architecture. 

References 
[1] S. Hamzehlou, J. R. Leiza, J. M. Asua, A new approach for mathematical 
modelling of the dynamic development of particle morphology, Chem. Eng. J. 304,  
2016, 655-666 

2.1.2 Steelmaking process 

For the different batch processes of the liquid steelmaking process, the focus was 
laid on modelling of the evolution of the melt temperature. For this purpose, also the 
thermal state of the refractory lined reactors (steel ladle and vessel for vacuum 
treatment) had to be acquired in a detailed manner. Additionally the thermal effect of 
the various metallurgical reactions which are performed within the different 
aggregates of the process route, such as decarburisation and deoxidation, had to be 
taken into account within the model calculations. Also the effect of material additions 
(alloy and deoxidation materials, slag formers etc.) on the melt temperature had to be 
considered.    

Regarding modelling of the melt temperature evolution, the complete chain of batch 
processes from tapping of the steel melt into the ladle at the converter up to the 
delivery of the melt to the continuous casting plant was taken into account. Fig. 2 
shows this part of the process route of liquid steelmaking in more detail. 

 

Figure 2: Chain of batch processes for ladle treatment of the liquid steel melt. 
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In accordance with the requirements of the steel plant at TKSE, a detailed modelling 
of the liquid melt temperature evolution was performed for the RH vacuum degassing 
plant and the gas stirred ladle treatment station for final refining of the steel melt. In 
these aggregates the final adjustment of the liquid melt temperature is performed 
according to the requirements of the continuous casting plant. Also the continuous in-
line measurement of the melt temperature has been applied and tested at these 
aggregates.    

The dynamic process models can be used for on-line monitoring and prediction of the 
evolution of the process state with focus on the melt temperature for the entire chain 
of batch processes for liquid steelmaking. In this sense the models can act as soft 
sensors to provide information on the evolution of the process state variables, 
especially of the melt temperature, which are so far not measurable in a continuous 
manner.  

The process models are based on dynamic energy and mass balance calculations, in 
combination with thermodynamics and reaction kinetics of metallurgical reactions 
with significant energy input due to their reaction energy (e.g. decarburisation and 
deoxidation reactions). The result of the energy balance calculation can be adapted 
to each reasonable spot temperature measurement performed with a thermocouple 
probe. 

The model calculations are implemented as non-linear differential and algebraic 
equations with stepwise defined model parameters for the different batch processes 
of the process chain.    

The real-time applicable process models also consider the effect of the thermal state 
of the refractory-lined metallurgical reactors on the melt temperature. For that 
purpose the refractory temperatures of ladle and vacuum vessel were included as 
separate state variables. From the temperature difference between inner wall of the 
vessels and melt temperature, the related melt temperature loss rates were derived.  

Input data for the process models are: 

 initial heat state, i.e. temperature, weight and composition (especially 
regarding C, O, Al, Si) of the steel bath at the beginning of ladle treatment, i.e. 
when the melt is tapped from the oxygen steelmaking converter into the ladle  

 initial ladle and vessel state, derived from characteristic data of ladle and 
vacuum vessel history influencing their thermal state (e.g. ladle and vessel 
empty times, ladle and vessel filled times during previous treatment etc. )   

 cyclic process data, i.e. mainly lance stirring gas flow rates, RH lift gas flow 
rate, lance oxygen flow rate and vessel pressure of vacuum treatment, 
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 acyclic event data, i.e. mainly material additions (alloy and deoxidation 
materials, cooling scrap, slag formers), samplings of steel with laboratory 
analyses, temperature and oxygen content measurements. 

These input data are required on the one hand to feed the dynamic model 
calculations, and on the other hand, with regard to the spot measurements of the 
heat state variables (steel bath temperature and analysis) to allow their validation.  

The following heat state variables are calculated continuously over time as outputs of 
the model: 

 current melt temperature 

 current temperatures of refractory wall of the ladle and the vacuum vessel    

 weight and composition of steel bath (especially regarding C, O, Al, Si)  

along the complete chain of batch processes for ladle treatment at the different 
aggregates from tapping to final stirring. A list of the most important state variables is 
given in Table 2. 

 
Table 2. List of state variables for the steelmaking process models. 

Name Symbol Unit 
Steel bath temperature ஻ܶ K 

Inner wall temperature ladle ௐܶ௅ K 

Inner wall temperature RH vessel ௐܶோு K 

Carbon content in steel melt ܿ஼  wt% 

Oxygen content in steel melt ܿை  wt% 

Aluminium content in steel melt ஺ܿ௟ wt% 
Silicon content in steel melt ܿௌ௜ wt% 

Mass of steel melt ݉௠ kg 
   

The process models were implemented as MatLab / Simulink application for offline 
simulation, to validate the model calculations by comparison to spot measurements 
for selected state variables as steel melt temperature and composition. Within this 
validation procedure, also the model parameters were identified which lead to an 
optimal model accuracy with respect to the melt temperature. 

Within an on-line process monitoring application, the dynamic process models can 
provide the actual process state variables within a cycle time of less than 10 
seconds. This is appropriate with respect to the dynamics and kinetics of the involved 
processes. For application within real-time control tools as MPC, the models can 
provide prediction results regarding the melt temperature evolution within less than 1 
s, which allows also iterative optimization calculations.     
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2.1.3 Silicon Production Process 

The ladle refining process for silicon production was described in detail in RECOBA 
Deliverable D 2.3. The offline model RafSim models the refining by following the flow 
of gas bubbles from the bottom of the ladle, where they are injected through a bottom 
plug, up to the bath surface. The gas is a combination of air and oxygen. The model 
calculates the concentrations of the different elements present on the slag film 
surrounding the bubble as it rises to the surface. When a set of bubbles reaches the 
surface, the model updates the bulk concentrations with the contributions from both 
the bubbles and surface reactions. 

The model can be seen as quasi-dynamic, describing both time and position 
variations by ordinary differential equations. The time variations describe the ladle 
dynamics, while the position variations are related to the vertical position of a gas 
bubble at a given time stamp.  

The reactions included in the model describe the formation of SiO2-CaO-Al2O3 slag 
from adding a mixture of air and oxygen to the metallic melt. The model divides the 
slag into one homogeneous and one inhomogeneous part. The current model 
formulation results in 12 state variables listed in Table 3 below.  

Table 3: State variables for offline silicon refining model. 

Name Symbol Unit 
Aluminium level in melt ݈ܿܣ wt% 

Calcium level in melt ܿܽܥ wt% 

Number of mol SiO2 in inhomogeneous part of slag ܱ݊ܵ݅2
݅  mol 

Number of mol Al2O3 in inhomogeneous part of slag ݊2ܱ3݈ܣ
݅  mol 

Number of mol CaO in inhomogeneous part of slag ܱ݊ܽܥ
݅  mol 

Number of mol SiO2 in homogeneous part of slag ܱ݊ܵ݅2
݄  mol 

Number of mol Al2O3 in homogeneous part of slag ݊2ܱ3݈ܣ
݄  mol 

Number of mol CaO in homogeneous part of slag ܱ݊ܽܥ
݄  mol 

Temperature in melt ܶ݉ K 

Temperature in ladle refractory ܶݓ K 

Scull thickness ݈݈݀݋݇ݏ m 

Mass of melt ݉݉ kg 

 

The variables are updated for each time step.  

The model divides the surface slag into one homogeneous and one inhomogeneous 
part. The extent of contact between the two parts is described by the area ratio of the 
inhomogeneous and homogenous part, which is again related to the volume ratio of 
the two parts multiplied by a user-defined parameter.  
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The additives are at first added to the inhomogeneous part, and then transferred to 
the homogenous part during a time period defined by the user. If the time period in 
between two successive additives of the same material is shorter than the user-
defined period, then the first additive will be transferred to the homogenous part 
during the period in between the two additives. 

It is assumed that all slag is contained in the homogenous part at start-up. For each 
time step, the concentration of Al (Ca)(Mg) in the melt is updated: 

• Reaction with top slag, given by the distance from equilibrium of slag to melt 
together with the corresponding mass transfer coefficient. This is a separate 
calculation for the inhomogeneous and homogenous part of the slag 

• Reaction on the bubbles given by the amount of slag film created for each time 
sample 

• Difference in concentrations of Al (Ca)(Mg) in the ladle melt and the furnace 
tapping stream. The tapping feed rate and the composition of the feed from 
the furnace are collected from user-defined tables for each sample and can 
therefore be configured to be time variant 

• Additions 

The desire to avoid negative concentrations in the melt leads to upper limits for the 
terms. Also, to avoid negative amounts of oxide in the slag additional lower limits are 
set. 

Fe is not refined to oxides, but oxides added to the melt will react with silicon in the 
melt and give iron, as shown below: 

 1/2ܱܵ݅2+݁ܨ⇌1/2ܵ݅+ܱ݁ܨ

 3/2ܱܵ݅2+݁ܨ2⇌ 3/2ܵ݅+2ܱ3݁ܨ

 2ܱ݅ܵ 2+݁ܨ3⇌ 2ܵ݅+3ܱ4݁ܨ

The iron concentration in the melt thus increases by 

• The difference between concentration of Fe in the ladle and in the feed from 
the furnace. The iron content from the furnace and the feed rate ݂݉̇݉݁݁݀	are 
found from a table each time step, and can therefore be configured to vary 
with time 

• Indirect by addition of iron oxides 
• Direct addition 
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During one time step the amount of SiO2 in the homogeneous part of the top slag is 
changed by: 

• Reaction with O2 from the air above the ladle. 
• The amount of oxygen that reacted in one set of bubbles less the oxygen that 

has formed Al2O3, CaO and MgO at the surface of the bubbles. 
• SiO2 transferred from the heterogeneous part of the top slag. 
• The reaction with Al, Ca and Mg from the melt given by the chemical driving 

force due to incomplete equilibrium between slag and melt, with its respective 
mass transfer coefficient. 

During one time step the amount of SiO2 in the heterogeneous part of the top slag is 
changed by: 

• The reaction with Al, Ca and Mg from the melt given by the chemical driving 
force due to incomplete equilibrium between slag and melt, with its respective 
mass transfer coefficient. 

• Additions of SiO2 and indirectly by additions of CaCO3 and iron oxides. 
• SiO2 transferred to the homogeneous part of the top slag 

The refining reactions for Al, Ca and Mg give changes to the homogeneous or 
heterogeneous part of the slag, depending on which slag part the reaction refers to. 
The transfer between heterogeneous and homogeneous slag happens with a given 
fraction of the remaining inhomogeneous slag each time step, given by a parameter 
chosen by the user, which tells how many time steps this transfer shall take. 

During one time step, the amount of Al2O3 (CaO)(MgO) in the homogeneous part of 
the top slag is changed by 

• Reaction with the melt, given by the distance from equilibrium between slag 
and melt, together with the mass transfer coefficient. 

• Slag added from one set of bubbles per unit time. 
• Mass transfer from the heterogeneous part of the slag. 

During one time step, the amount of Al2O3 (CaO)(MgO) in the heterogeneous part of 
the top slag is changed by 

• Reaction with the melt, given by the distance from equilibrium between slag 
and melt, together with the mass transfer coefficient. 

• Solid additions, for CaO also indirectly from CaCO3 
• Mass transfer to the homogeneous part of the slag 
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Indirect addition of CaO from CaCO3 is described by CaCO3 reacting with Si to 
SiO2, CaO, CO and O2 as shown below: 

 1/4ܱ2+ ܱܥ + ܱܽܥ + 1/4ܱܵ݅2⇌1/4ܵ݅+ 3ܱܥܽܥ

The metal in the ladle is cooled by (enthalpy losses) 

• Heating and melting of solid additions of Si, Al, SiO2, CaO and Al2O3 
• Heating of the gas through the bottom plug, O2 and N2. 
• Heat losses by conduction through the ladle walls and bottom. 
• Heat losses by radiation from the surface of the melt. 
• Endothermic reactions involving Al2O3, CaO, SiO2, SiO3, CaCO3, FeO, 

Fe2O3 and Fe3O4 

The metal in the ladle is heated by additions of hot metal from the furnace, as well as 
exothermic reactions such as the oxidation of Si. 

The ladle wall temperature is found from the heat equation, where a temperature 
change is caused by a change in the conductive heat flow, and the temperature is 
fixed at the ladle exterior. 

For a complete heat balance, the heat transfer between different regions of the ladle 
refractory should be considered, for example between side walls and the bottom 
region of the ladle. However, simulations showed that these contributions are 
negligible compared to the heat transfer directly through the walls, so a simpler, 
though somewhat less accurate, model was chosen. Generally, the heat transferred 
through the ladle lining is a small fraction of the total heat losses which mainly is 
caused by free surface radiation from the top. 

The amount of melt in the ladle is for each time step changed by: 

• Metal tapped from the furnace 
• Addition of fines/cooling metal 
• Skull formation 
• Slag formation, where one mol reduction in SiO2 from a refining reaction or 

reaction with additions gives one mol Si increase and vice versa. The increase 
in SiO2 from addition of SiO2 will not change the amount of Si directly, so this 
is not taken into account. 

• Impurities that have left the melt 
• Addition of Fe and Fe oxides, Al, Ca and Mg 

Two remaining states, “skulls” and “old skulls” both have the same structure. They 
describe the skulls made during the current tapping and the ones remaining from 
earlier tappings. Each structure contains at least 2 elements, one element describing 
the skulls at the ladle bottom, and one or more elements describing the skulls along 
the ladle walls.  
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2.1.4 Generalisation of model structure for other batch processes  

The description of the structure of the models for the different batch processes given 
above clearly reveals the similarities of the liquid steelmaking and the silicon refining 
process. Both are high temperature processes, which induces that a continuous and 
direct measurement of the relevant process state variables (mainly temperature and 
composition of the melt) is not possible. This emphasizes the need for a dynamic 
process model, which allows to describe the evolution of the process state variables 
in a continuous and real-time manner. This can be done by ordinary differential and 
algebraic equations. In combination with thermodynamic equilibrium calculations for 
the metallurgical reactions, these equations become non-linear.  

In addition, for dynamic modelling of the high temperature processes to be used in 
real-time applications, it has to be assumed that the melt is homogeneous with 
respect to temperature and composition during the whole process time. A spatial 
resolution of the model calculation would increase the calculation time enormously, 
far beyond the 10 seconds which can be normally realised with such a dynamic 
model. At least for the steelmaking and the silicon refining processes this assumption 
is acceptable, as the melt is normally stirred well by argon gas injection. 

Considering these preconditions and assumptions, the model structure which has 
been set up for the steelmaking and the silicon refining process can be transferred to 
other, similar high temperature batch processes.        

For the polymerisation process, measurements at low temperatures (usually below 
100 °C) are not such a problem, but all reactions within the process are highly 
temperature dependent. These reactions influence microstructure of the polymer 
particles (both molecular architecture and morphology), which is hardly measurable. 
The microstructure determines desirable macroscopic product properties. Therefore, 
models estimating these properties based on temperature development are 
extremely useful for online control.  

The morphological model developed by PMAT predicts evolution of different phases 
during the polymerisation process. The model is encoded as a set of ODEs, so it is 
easily usable for online control of any multiphase system. 

It was also shown that not all microscopic properties could be easily determined by 
continuous formulations of the model. In these cases, stochastic approaches are 
more suitable, but control algorithms require besides fast computing models also 
continuous predictions. Therefore, we presented a surrogate model, which is 
applicable for online control. These surrogate models are applicable in any system 
which requires a different approach than models based on ODEs. 



 
 

                                                                 Deliverable 4.7 

______________________________________________________________ 
 

 

- Public   - page 15/22  

2.2 Interfaces to control and optimization tools 

2.2.1 Polymerization process 

Macro scale model was previously tested as a part of control tools, but a new 
experimental technique, Raman spectroscopy, enables a wider use of the model. 
Previously, only overall propagation constant could be estimated online (to reflect 
impurities in feeds), but now propagation constants for individual monomers can be 
estimated separately, which improves predictions of polymer properties. 

Morphological model can be implemented as a part of control tools similarly as 
Macroscale model, because it is also implemented as a set of ODEs. In spite of 
a huge effort within the project, only partial success has been achieved in 
experimental techniques capable of online morphology characterization. Therefore, 
results of the morphology control can be robustly validated only offline after reaction. 
Efforts towards improved online morphology characterization and control are 
ongoing. 

Implementation of Monte Carlo method into control tools is a bit tricky, because most 
methods usually employed for online control require models based on deterministic 
equations. Therefore, we implemented a surrogate model, which maps the space of 
control variables (temperature and monomer and initiator feedings) and replaces the 
local predictions of the Monte Carlo model by a continuous radial based surrogate 
function. An example of an interpolating surrogate function is depicted in Figure 3. 
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Figure 3: 2D intersection of the Monte Carlo predictions (dots on blue lines) and interpolated surrogate function 
(surface) respecting the statistical error of the Monte Carlo method. 

Radial based surrogate function can be precomputed before its use in online control 
and automatically corrected in the most relevant positions during the control. This 
learning ability highly improves capabilities of surrogate function at not so well 
mapped conditions. 

Implementation of surrogate modelling into a process control tools opens a huge 
possibilities not only for non-deterministic models, but also for models, which are 
computationally too demanding for online control. 

2.2.2 Steelmaking process 
The batch process chain for liquid steel production consists of four sub-processes, as 
already shown in Figure 2.  

For each of the process steps σ in the steelmaking process route, an equation 
system is considered described by 

 ࢞௞ାଵ ൌ ,ఙሺ࢞௞ࢌ ࢛௞,   ሻࣂ
 ࢟௞ ൌ ,ఙሺ࢞௞ࢎ ࢛௞,   ሻࣂ
 ૙ ൌ ,ఙሺ࢞௞ࢍ ࢛௞,  ሻࣂ

where ࢞݇ ∈ ܴ
݊	is a vector of state variables. Here state variables are the liquid steel 

temperature, and temperature of refractory-lined ladle and vacuum vessel.  ࢟݇ ∈ 	࣬
݉ 

are the measurements, ࢛࢑ ∈ 	࣬
݀ the inputs, and ࣂ	 ∈ ࣬௣ the parameter vector. This 

model is approximated by a piece wise linear model as described by 

 
࢞௞ାଵ ൌ ሻࣂఙሺ௞ሻሺࢌ ൅ ሻ࢞௞ࣂఙሺ௞ሻሺ࡭ ൅ ሻ࢛௞ࣂఙሺ௞ሻሺ࡮ ൅ 		௞ࢊఙሺ௞ሻࡲ
࢟௞ ൌ   ,࢞௞	ሻࣂఙሺ௞ሻሺ࡯
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with in this case a simplified automat 

ሺ݇ሻߪ  ൌ ൝
1 ݂݅ ݇ଵ ൑ ݇ ൏ ݇ଶ
⋮ ⋮ ⋮
݊ ݂݅ ݇௟ିଵ ൑ ݇ ൏ ݇௟

 
 

where ࢛࢑ ∈ 	࣬
݀െݏ is the control input and ࢑ࢊ ∈ 	࣬

 is the part of the inputs which are ݏ
not used for control but called disturbances. In the first step, the sums, products and 
quotients of parameters must be combined into one parameter. In a further step we 
determine with the help of the eigenvalue method which parameters are identifiable 
on the basis of the existing measurement data. The MPC and ILC have been 
designed on the basis of the identified model. The dynamic models described under 
2.1.2 are used in the controllers for prediction.  

The designed model, observer and controller are integrated in the tool shown in 
figure 4.  It provides an overview of the BFI-ILC-MPC system and its interface to a 
typical Level 2 automation environment of a steel plant. 

 
Figure 4: BFI-ILC-System overview 
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2.2.3 Silicon Production Process 

There will be two versions of the model for the silicon refining process in the 
RECOBA project. The model RafSim described in Section 2.1.3 is an updated 
version of a previous process simulator, implemented in Python. This will be used for 
offline process simulations. The second version will be a reimplementation of this 
model in C/C++ and implemented and compiled as a Cybernetica CENIT model 
component and made suitable for online model based estimation and control.  

The Cybernetica CENIT framework is illustrated in figure 5. 

The model component to be developed for online use will communicate process data, 
measurements, estimates of states and parameters and derived outputs/controlled 
variables with the existing process control systems and database systems via the 
OPC communication protocol. OPC is chosen as a standard for RECOBA and will be 
the primary communication protocol used in the Silicon refining case. In the case of 
required data that is not available through OPC, a Windows Service will be created to 
acquire data from for instance a database and write it to an OPC-server. Cybernetica 
CENIT has built-in support for OPC communication and will be used in the 
implementation of the online model.  

 

Figure 5: Illustration of the integration of CENIT into a process control system. The RafSim model is 
converted to a model component in CENIT. 
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The original version of RafSim has been available for some time and is roughly fitted 
to process data. This was done when the model was developed years ago, and a 
model fitting may have to be repeated now that a new model version is available. The 
online version of the model will be validated by comparing with the offline model as 
well as actual process data. Cybernetica Modelfit is a tool developed for model 
validation and parameter estimation either recursively or to one or several datasets. 
This tool will be used for the online model component.  

The following measurements are available and in use in the refining process today: 

• Chemical analysis 
• Lip sample: A manual sample from the tapping streaming is performed 

approx. 1 ½ hrs after the tapping has started (20 min before the ladle is full). 
• Dip sample: A manual sample from the ladle is performed 15 min prior to the 

ladle is full.  
• Temperature in the melt.  
• Ladle weight 
• Ladle weight measured prior to start of tapping.  

Sculls forming during tapping decrease the ladle volume and affects the temperature 
profiles of the ladle. The measurement should be included in the online model to 
estimate sculls for the current batch.  

New types of measurements covered by RECOBA will be: 

• Temperature monitoring of ladle refractories. 

It is important to establish a correlation between sculls and refractory temperatures to 
be able to optimize the ladle temperature.  

• Level measurements 

A bath level measurement indicates the tapping flow into the ladle, which is important 
to maintain an accurate measurement of mass flow into the system, as well as 
serving as a safety measure in cases when increased sculling may cause the ladle to 
overflow. 

The following actions are available for controlling the refining process: 

• addition of slag-formers (silica sand, limestone/burned lime and 
alumina/aluminium metal), 

• addition of solid Si (for cooling purposes), 
• adjusting the flow of air/oxygen, 
• adjusting the ratio of air to oxygen in the refining gas, 
• refining time. 
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According to deliverable D 2.3, the process/control model of ladle refining should be 
able to predict the dynamic behaviour of the melt based on the following parameter 
groups: 

• ladle geometry and stirring characteristics, 
• slag (temperature, amount and composition), 
• molten silicon (temperature, amount and composition), 
• ladle refractories (temperature), 
• metal flow from the furnace, 
• eventual addition of slag fluxes and silicon (for cooling purposes). 

The present offline version of the model can simulate the batch length of two hours 
within a few seconds. The present model is implemented in Python, which is an 
interpreted language. When the model is re-implemented in C/C++ it is expected to 
run faster, which means there is enough time for estimation and optimization for 
predictive control. The re-implemented online model will probably have some 
differences in the number of control volumes, and how these control volumes are 
configured. Some changes are likely to be made during the model development 
phase and when the online model is fitted and validated, but the main structure is 
predicted to be the same. At this point, there does not seem to be the need for model 
reduction, as the size and calculation speed of the existing model is appropriate for 
online use, and the suggested changes from the offline version to the online version 
do not significantly change this. 

Process data gathered in WP 4.4 has been used for validating the process model 
described in Section 2.1.3. The model will be the basis for developing model-
predictive control in WP5 to obtain the main goal of the RECOBA project in 
automating the refining process and decreasing the product quality variations.  

Several plants today use a decision support system for follow-up of the refining 
process. The system calculates the suggested time for the final refining and the 
amount of additives added to reach the product specifications. The operators perform 
the corrective actions manually. By applying a validated model-based decision 
support system and direct on-line recordings of process parameters, Elkem 
anticipates that the yield of silicon will increase by several percent in the refining 
process, and that product quality consistency also improves.  

The development of an optimisation tool assumes that key process data are available 
on-line. Elkem has accelerated the work of supplying this data to the on-line model. 
At Elkem Thamshavn, home to the largest Si-furnace in the world, gas flow and 
weight of solid additions to the process are now recorded automatically and made 
available to the on-line model. Further testing and improvement of the on-line model 
will continue after the RECOBA project has been finished.  
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2.2.4 Generalisation of interfaces to control tools for application at other batch 
processes 

The previously given description of the control structure for the different batch 
processes again illustrates the similarities between liquid steel production and silicon 
refining. At both high-temperature processes continuous and direct measurements of 
the relevant process state variables (mainly temperature and composition of the melt) 
are not possible. Moreover, control actions in the process are only possible at certain 
times. 

This presents an additional difficulty in both applications. In both cases, the control 
structure consists of an observer and a model predictive controller. The observer is 
event triggered in both cases, as the temperature measurements are not carried out 
in fixed time intervals. Due to the small number of measurements that are available 
online, on-line parameter estimation is not possible, but rather an estimate of the melt 
and ladle temperature.   

Regarding the polymerisation process, the presented implementation of Raman 
spectroscopy in process control application enables an online estimation of more 
parameters than it was previously possible. In addition, the presented surrogate 
model, adapted online as required by control algorithms, provides fast predictions 
based on stochastic models. This application of surrogate models introduces a totally 
new concept of process control for complex processes. 

3 Summary and conclusions  

Summary and conclusions are provided separately for the different RECOBA use 
cases.    

Polymerisation: 

Several models were developed during the RECOBA project and a huge step forward 
was made for process control in complex situations. Application of Raman 
spectroscopy enabled online estimation of more model parameters than it was 
previously possible. Morphological models predict evolution of different phases in 
complex multiphase systems and thus enabled control of particle morphology in 
emulsion copolymerization. Hybrid Monte Carlo model revealed possibilities of 
developing stochastic models fast enough for online control. Overall the combination 
of continuous and stochastic modeling opens new possibilities in process control. 

Steelmaking:  

During the RECOBA project, a dynamic model for the entire process route of liquid 
steelmaking has been developed by BFI and validated with the help of process data 
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acquired directly at a steel plant. The analytical model is based on a mass and 
energy balance, involving thermodynamics as well as kinetics of the temperature 
relevant metallurgical reactions. The model focuses on monitoring and prediction of 
the melt temperature and is used in a slightly simplified version for real-time control 
applications, such as MPC and Iterative Learning control (ILC).  

Silicon: 

During the RECOBA project, an on-line model for silicon refining has been developed 
by Cybernetica and Elkem. The model accesses process parameters directly and 
predicts the composition and the temperature of the silicon melt in real-time. The 
physical model is built on fundamental principles such as mass and energy balance, 
thermodynamics as well as kinetics. This model is "re-engineered" using the 
Cybernetia software packages for real-time, on-line application.  

 

Finally it was shown how the selected model structures and model interfaces to 
online process control systems can be transferred to other, similar processes within 
the process industry.  


